Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Structure ; 32(2): 148-156.e5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141613

RESUMO

The calcium-selective TRPV5 channel activated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in calcium homeostasis. Recently, cryoelectron microscopy (cryo-EM) provided molecular details of TRPV5 modulation by exogenous and endogenous molecules. However, the details of TRPV5 inhibition by the antifungal agent econazole (ECN) remain elusive due to the low resolution of the currently available structure. In this study, we employ cryo-EM to comprehensively examine how the ECN inhibits TRPV5. By combining our structural findings with site-directed mutagenesis, calcium measurements, electrophysiology, and molecular dynamics simulations, we determined that residues F472 and L475 on the S4 helix, along with residue W495 on the S5 helix, collectively constitute the ECN-binding site. Additionally, the structure of TRPV5 in the presence of ECN and PI(4,5)P2, which does not show the bound activator, reveals a potential inhibition mechanism in which ECN competes with PI(4,5)P2, preventing the latter from binding, and ultimately pore closure.


Assuntos
Antifúngicos , Econazol , Canais de Cátion TRPV , Antifúngicos/farmacologia , Cálcio/metabolismo , Microscopia Crioeletrônica , Econazol/farmacologia , Simulação de Dinâmica Molecular , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/química
2.
Commun Biol ; 6(1): 966, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736816

RESUMO

Transient receptor potential (TRP) ion channels are gated by diverse intra- and extracellular stimuli leading to cation inflow (Na+, Ca2+) regulating many cellular processes and initiating organismic somatosensation. Structures of most TRP channels have been solved. However, structural and sequence analysis showed that ~30% of the TRP channel sequences, mainly the N- and C-termini, are intrinsically disordered regions (IDRs). Unfortunately, very little is known about IDR 'structure', dynamics and function, though it has been shown that they are essential for native channel function. Here, we imaged TRPV2 channels in membranes using high-speed atomic force microscopy (HS-AFM). The dynamic single molecule imaging capability of HS-AFM allowed us to visualize IDRs and revealed that N-terminal IDRs were involved in intermolecular interactions. Our work provides evidence about the 'structure' of the TRPV2 IDRs, and that the IDRs may mediate protein-protein interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas , Canais de Cátion TRPV , Microscopia de Força Atômica , Imagem Individual de Molécula
3.
Protein Sci ; 32(1): e4490, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327382

RESUMO

Transient receptor potential vanilloid (TRPV) channels play various important roles in human physiology. As membrane proteins, these channels are modulated by their endogenous lipid environment as the recent wealth of structural studies has revealed functional and structural lipid binding sites. Additionally, it has been shown that exogenous ligands can exchange with some of these lipids to alter channel gating. Here, we used molecular dynamics simulations to examine how one member of the TRPV family, TRPV2, interacts with endogenous lipids and the pharmacological modulator cannabidiol (CBD). By computationally reconstituting TRPV2 into a typical plasma membrane environment, which includes phospholipids, cholesterol, and phosphatidylinositol (PIP) in the inner leaflet, we showed that most of the interacting surface lipids are phospholipids without strong specificity for headgroup types. Intriguingly, we observed that the C-terminal membrane proximal region of the channel binds preferentially to PIP lipids. We also modelled two structural lipids in the simulation: one in the vanilloid pocket and the other in the voltage sensor-like domain (VSLD) pocket. The simulation shows that the VSLD lipid dampens the fluctuation of the VSLD residues, while the vanilloid lipid exhibits heterogeneity both in its binding pose and in its influence on protein dynamics. Addition of CBD to our simulation system led to an open selectivity filter and a structural rearrangement that includes a clockwise rotation of the ankyrin repeat domains, TRP helix, and VSLD. Together, these results reveal the interplay between endogenous lipids and an exogenous ligand and their effect on TRPV2 stability and channel gating.


Assuntos
Antineoplásicos , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/química , Ligantes , Repetição de Anquirina , Sítios de Ligação , Fosfolipídeos
4.
Astrobiology ; 22(11): 1337-1350, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282180

RESUMO

Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Humanos , Dessecação , Congelamento , Saccharomyces cerevisiae , Esporos Bacterianos/efeitos da radiação , Radiação Ionizante , Poliploidia
5.
Cell Calcium ; 106: 102620, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35834842

RESUMO

Transient Receptor Potential Vanilloid 5 and 6 (TRPV5 and TRPV6) are Ca2+ selective epithelial ion channels. They are the products of a relatively recent gene duplication in mammals, and have high sequence homology to each other. Their functional properties are also much more similar to each other than to other members of the TRPV subfamily. They are both constitutively active, and this activity depends on the endogenous cofactor phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Both channels undergo Ca2+-induced inactivation, which is mediated by direct binding of the ubiquitous Ca2+ binding protein calmodulin (CaM) to the channels, and by a decrease in PI(4,5)P2 levels by Ca2+ -induced activation of phospholipase C (PLC). Recent cryo electron microscopy (cryo-EM) and X-ray crystallography structures provided detailed structural information for both TRPV5 and TRPV6. This review will discuss this structural information in the context of the function of these channels focusing on the mechanism of CaM inhibition, activation by PI(4,5)P2 and binding of pharmacological modulators.


Assuntos
Cálcio , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Microscopia Crioeletrônica , Mamíferos/metabolismo , Fosfatidilinositóis , Canais de Cátion TRPV/metabolismo
6.
Cell Rep ; 39(4): 110737, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476976

RESUMO

Transient receptor potential vanilloid 5 (TRPV5) is a kidney-specific Ca2+-selective ion channel that plays a key role in Ca2+ homeostasis. The basal activity of TRPV5 is balanced through activation by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and inhibition by Ca2+-bound calmodulin (CaM). Parathyroid hormone (PTH), the key extrinsic regulator of Ca2+ homeostasis, increases the activity of TRPV5 via protein kinase A (PKA)-mediated phosphorylation. Metabolic acidosis leads to reduced TRPV5 activity independent of PTH, causing hypercalciuria. Using cryoelectron microscopy (cryo-EM), we show that low pH inhibits TRPV5 by precluding PI(4,5)P2 activation. We capture intermediate conformations at low pH, revealing a transition from open to closed state. In addition, we demonstrate that PI(4,5)P2 is the primary modulator of channel gating, yet PKA controls TRPV5 activity by preventing CaM binding and channel inactivation. Our data provide detailed molecular mechanisms for regulation of TRPV5 by two key extrinsic modulators, low pH and PKA.


Assuntos
Cálcio , Canais de Cátion TRPV , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Microscopia Crioeletrônica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hormônio Paratireóideo , Canais de Cátion TRPV/genética
7.
Nat Commun ; 13(1): 2334, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484159

RESUMO

Transient receptor potential vanilloid 2 (TRPV2) is involved in many critical physiological and pathophysiological processes, making it a promising drug target. Here we present cryo-electron microscopy (cryo-EM) structures of rat TRPV2 in lipid nanodiscs activated by 2-aminoethoxydiphenyl borate (2-APB) and propose a TRPV2-specific 2-ABP binding site at the interface of S5 of one monomer and the S4-S5 linker of the adjacent monomer. In silico docking and electrophysiological studies confirm the key role of His521 and Arg539 in 2-APB activation of TRPV2. Additionally, electrophysiological experiments show that the combination of 2-APB and cannabidiol has a synergetic effect on TRPV2 activation, and cryo-EM structures demonstrate that both drugs were able to bind simultaneously. Together, our cryo-EM structures represent multiple functional states of the channel, providing a native picture of TRPV2 activation by small molecules and a structural framework for the development of TRPV2-specific activators.


Assuntos
Canais de Cátion TRPV , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Domínios Proteicos , Ratos , Canais de Cátion TRPV/metabolismo
8.
mBio ; 13(1): e0339421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012337

RESUMO

Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.


Assuntos
Antioxidantes , Deinococcus , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Deinococcus/metabolismo , Deinococcus/efeitos da radiação , Manganês/metabolismo , Superóxidos/metabolismo , Superóxido Dismutase/metabolismo , Envelhecimento
9.
Vascul Pharmacol ; 143: 106954, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35063655

RESUMO

Diabetic neuropathy (DN) encompasses a group of clinical or subclinical manifestations involving a dysfunction in the peripheral nervous system. The cause of the dysfunction is the development of microvascular complications related to diabetes, a disease that affects about 381 million people worldwide. Approximately 50% of patients currently diagnosed with diabetes are expected to manifest DN in the next 10 years. The diagnosis can be made clinically by establishing a good patient history and delving into the symptoms to rule out other etiologies. Treatment of DN focuses on glycemic control and the use of medications to reduce pain, including NSAIDs, antidepressants and antiepileptic drugs. The pathogenesis is of multifactorial origin, associated with various metabolic, vascular, inflammatory and neurodegenerative disorders. The three fundamental cellular alterations participating in the development of DN are chronic inflammation, endothelial dysfunction and oxidative stress. Since the combination of all three is capable of giving rise to nerve ischemia and direct axonal injury, these factors play a key role in the development of polyneuropathy. However, neuronal and microvascular changes do not occur in the same way in all patients with DN, some of whom have no detectable blood abnormalities.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/tratamento farmacológico , Humanos , Inflamação/complicações , Estresse Oxidativo
10.
Structure ; 30(1): 139-155.e5, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34453887

RESUMO

Transient receptor potential (TRP) channels emerged in fungi as mechanosensitive osmoregulators. The Saccharomyces cerevisiae vacuolar TRP yeast 1 (TRPY1) is the most studied TRP channel from fungi, but the structure and details of channel modulation remain elusive. Here, we describe the full-length cryoelectron microscopy structure of TRPY1 at 3.1 Å resolution in a closed state. The structure, despite containing an evolutionarily conserved and archetypical transmembrane domain, reveals distinctive structural folds for the cytosolic N and C termini, compared with other eukaryotic TRP channels. We identify an inhibitory phosphatidylinositol 3-phosphate (PI(3)P) lipid-binding site, along with two Ca2+-binding sites: a cytosolic site, implicated in channel activation and a vacuolar lumen site, implicated in inhibition. These findings, together with data from microsecond-long molecular dynamics simulations and a model of a TRPY1 open state, provide insights into the basis of TRPY1 channel modulation by lipids and Ca2+, and the molecular evolution of TRP channels.


Assuntos
Cálcio/metabolismo , Fosfatos de Fosfatidilinositol/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Canais de Cátion TRPC/química , Canais de Cátion TRPC/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Citosol/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatos de Fosfatidilinositol/química , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/química
11.
J Virol ; 95(20): e0116421, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346767

RESUMO

One approach to improve the utility of adeno-associated virus (AAV)-based gene therapy is to engineer the AAV capsid to (i) overcome poor transport through tissue barriers and (ii) redirect the broadly tropic AAV to disease-relevant cell types. Peptide- or protein-domain insertions into AAV surface loops can achieve both engineering goals by introducing a new interaction surface on the AAV capsid. However, we understand little about the impact of insertions on capsid structure and the extent to which engineered inserts depend on a specific capsid context to function. Here, we examine insert-capsid interactions for the engineered variant AAV9-PHP.B. The 7-amino-acid peptide insert in AAV9-PHP.B facilitates transport across the murine blood-brain barrier via binding to the receptor Ly6a. When transferred to AAV1, the engineered peptide does not bind Ly6a. Comparative structural analysis of AAV1-PHP.B and AAV9-PHP.B revealed that the inserted 7-amino-acid loop is highly flexible and has remarkably little impact on the surrounding capsid conformation. Our work demonstrates that Ly6a binding requires interactions with both the PHP.B peptide and specific residues from the AAV9 HVR VIII region. An AAV1-based vector that incorporates a larger region of AAV9-PHP.B-including the 7-amino-acid loop and adjacent HVR VIII amino acids-can bind to Ly6a and localize to brain tissue. However, unlike AAV9-PHP.B, this AAV1-based vector does not penetrate the blood-brain barrier. Here we discuss the implications for AAV capsid engineering and the transfer of engineered activities between serotypes. IMPORTANCE Targeting AAV vectors to specific cellular receptors is a promising strategy for enhancing expression in target cells or tissues while reducing off-target transgene expression. The AAV9-PHP.B/Ly6a interaction provides a model system with a robust biological readout that can be interrogated to better understand the biology of AAV vectors' interactions with target receptors. In this work, we analyzed the sequence and structural features required to successfully transfer the Ly6a receptor-binding epitope from AAV9-PHP.B to another capsid of clinical interest, AAV1. We found that AAV1- and AAV9-based vectors targeted to the same receptor exhibited different brain-transduction profiles. Our work suggests that, in addition to attachment-receptor binding, the capsid context in which this binding occurs is important for a vector's performance.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Ligação Proteica/genética , Aminoácidos/genética , Animais , Antígenos Ly/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Peptídeos/genética , Domínios Proteicos/genética , Transdução Genética/métodos , Transgenes/genética
12.
Mol Cell ; 81(15): 3145-3159.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214465

RESUMO

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.


Assuntos
Bacteriófago T7/genética , DNA Viral/química , Periplasma/química , Proteínas do Core Viral/química , Biologia Computacional , Microscopia Crioeletrônica , Citoplasma/química , DNA Viral/metabolismo , Bicamadas Lipídicas/metabolismo , Periplasma/genética , Periplasma/metabolismo , Podoviridae/química , Podoviridae/genética , Proteínas do Core Viral/metabolismo
13.
ACS Cent Sci ; 7(5): 868-881, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079902

RESUMO

The use of computational tools to identify biological targets of natural products with anticancer properties and unknown modes of action is gaining momentum. We employed self-organizing maps to deconvolute the phenotypic effects of piperlongumine (PL) and establish a link to modulation of the human transient receptor potential vanilloid 2 (hTRPV2) channel. The structure of the PL-bound full-length rat TRPV2 channel was determined by cryo-EM. PL binds to a transient allosteric pocket responsible for a new mode of anticancer activity against glioblastoma (GBM) in which hTRPV2 is overexpressed. Calcium imaging experiments revealed the importance of Arg539 and Thr522 residues on the antagonistic effect of PL and calcium influx modulation of the TRPV2 channel. Downregulation of hTRPV2 reduces sensitivity to PL and decreases ROS production. Analysis of GBM patient samples associates hTRPV2 overexpression with tumor grade, disease progression, and poor prognosis. Extensive tumor abrogation and long term survival was achieved in two murine models of orthotopic GBM by formulating PL in an implantable scaffold/hydrogel for sustained local therapy. Furthermore, in primary tumor samples derived from GBM patients, we observed a selective reduction of malignant cells in response to PL ex vivo. Our results establish a broadly applicable strategy, leveraging data-motivated research hypotheses for the discovery of novel means tackling cancer.

14.
Methods Enzymol ; 653: 49-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34099181

RESUMO

The transient receptor potential (TRP) vanilloid 2 (TRPV2) and TRP vanilloid 5 (TRPV5) cation channels play an important role in various physiological and pathophysiological processes. The heterologous expression and purification of these channels is critical for functional and structural characterization of these important proteins. Full-length rat TRPV2 and rabbit TRPV5 can both be expressed in Saccharomyces cerevisiae and affinity purified using the 1D4 epitope and antibody to yield pure, functional channels. Further, these channels can be reconstituted into lipid nanodiscs for a more functionally relevant environment. Presented here are protocols for the expression of full-length rat TRPV2 and rabbit TRPV5 in Saccharomyces cerevisiae, their affinity purification, and their reconstitution into nanodiscs for structural and functional studies.


Assuntos
Canais de Cátion TRPV , Animais , Coelhos , Ratos , Canais de Cátion TRPV/genética
15.
J Mol Biol ; 433(17): 166914, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33676926

RESUMO

Transient receptor potential (TRP) ion channels are a super-family of ion channels that mediate transmembrane cation flux with polymodal activation, ranging from chemical to physical stimuli. Furthermore, due to their ubiquitous expression and role in human diseases, they serve as potential pharmacological targets. Advances in cryo-EM TRP channel structural biology has revealed general, as well as diverse, architectural elements and regulatory sites among TRP channel subfamilies. Here, we review the endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms.


Assuntos
Preparações Farmacêuticas/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica/métodos , Humanos , Ligantes
16.
Psychooncology ; 30(7): 1051-1058, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33655563

RESUMO

OBJECTIVE: Cancer patients have elevated suicide risk compared to the general population. However, little is known about the characteristics of cancer patients who have died by suicide. The objectives of the study were to compare the characteristics of suicide cases with, and without cancer, and determine whether age was associated with differences in characteristics. METHODS: A total of 14,446 suicide cases between 2003 and 2017 in Hong Kong were identified using Coroner's Court reports. Cases were grouped by cancer status, based on medical history in the reports. Information extracted from the reports included sociodemographic variables and detailed descriptions of the suicide event. Univariate analyses and overall and subgroup multiple logistic regressions were performed to compare characteristics between the two groups. RESULTS: Of the 14,446 suicide cases, 1,461 (10.11%) had a cancer history. Compared to noncancer cases, cancer patients were generally older and less likely to live alone; more likely to use violent methods; less likely to have histories of physical and psychiatric problems; and more likely to communicate about their suicidal intent before death. Age was significantly associated with differences between cancer and noncancer cases. CONCLUSIONS: Cancer suicide cases have different characteristics from noncancer cases. Mental health screening may not be sufficient for suicide prevention among cancer patients. Healthcare professionals and caregivers should be aware of cancer patients' suicide risk, even when there are no signs of psychiatric disturbance.


Assuntos
Neoplasias , Suicídio , Hong Kong/epidemiologia , Humanos , Fatores de Risco , Ideação Suicida
17.
Vaccines (Basel) ; 9(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514059

RESUMO

Acinetobacter baumannii is a bacterial pathogen that is often multidrug-resistant (MDR) and causes a range of life-threatening illnesses, including pneumonia, septicemia, and wound infections. Some antibiotic treatments can reduce mortality if dosed early enough before an infection progresses, but there are few other treatment options when it comes to MDR-infection. Although several prophylactic strategies have been assessed, no vaccine candidates have advanced to clinical trials or have been approved. Herein, we rapidly produced protective whole-cell immunogens from planktonic and biofilm-like cultures of A. baumannii, strain AB5075 grown using a variety of methods. After selecting a panel of five cultures based on distinct protein profiles, replicative activity was extinguished by exposure to 10 kGy gamma radiation in the presence of a Deinococcus antioxidant complex composed of manganous (Mn2+) ions, a decapeptide, and orthophosphate. Mn2+ antioxidants prevent hydroxylation and carbonylation of irradiated proteins, but do not protect nucleic acids, yielding replication-deficient immunogenic A. baumannii vaccine candidates. Mice were immunized and boosted twice with 1.0 × 107 irradiated bacterial cells and then challenged intranasally with AB5075 using two mouse models. Planktonic cultures grown for 16 h in rich media and biofilm cultures grown in static cultures underneath minimal (M9) media stimulated immunity that led to 80-100% protection.

18.
Can Urol Assoc J ; 15(7): E356-E360, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33382373

RESUMO

INTRODUCTION: Understanding the composition of a kidney stone is crucial in leading to proper treatment and preventing reoccurring urolithiasis. This study aimed to investigate the prevalence of urolithiasis in the province of New Brunswick (NB), Canada. METHODS: A total of 3828 kidney stone analysis reports from October 1, 2016 to September 30, 2019, were reviewed from laboratory information systems. Among them, 3311 were identified as new cases. Stone compositions were analyzed by the Fourier transform infrared spectrometry. Incident rates were compared using Chi-squared analysis of different age, sex, and regional health authority (RHA) zones. RESULTS: The prevalence of urolithiasis in NB was 147.8 per 100 000 person-years. Males had a significantly higher (X2=254, p<0.001) incident rate of 189 (95% confidence interval [CI] 182-198) than females (107 [95% CI 102-114]) per 100 000 person-years. Zone 1 had significantly higher (245 per 100 000 person-years, p<0.001) prevalence compared to other RHA zones. Age group over 65 years had the highest incidence rate of 253 per 100 00 person-years of all groups. The predominant kidney stone types in NB were calcium oxalate monohydrate (60.68%) and calcium oxalate dihydrate (11.58%). Those patients aged 0-18 years had a high percentage of struvite (4.32%) vs. the provincial average (2.19%) (p<0.001). CONCLUSIONS: The prevalence of NB's urolithiasis is slightly higher than that of Ontario. Since both zones 1.1 and 1.2 have significantly high prevalence and are situated in the Moncton area (combined zone 1), it may suggest that geographical factors play a role in the prevalence of urolithiasis in NB.

19.
Cell Calcium ; 87: 102168, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32004816

RESUMO

Transient Receptor Potential channels from the vanilloid subfamily (TRPV) are a group of cation channels modulated by a variety of endogenous stimuli as well as a range of natural and synthetic compounds. Their roles in human health make them of keen interest, particularly from a pharmacological perspective. However, despite this interest, the complexity of these channels has made it difficult to obtain high resolution structures until recently. With the cryo-EM resolution revolution, TRPV channel structural biology has blossomed to produce dozens of structures, covering every TRPV family member and a variety of approaches to examining channel modulation. Here, we review all currently available TRPV structures and the mechanistic insights into gating that they reveal.


Assuntos
Ativação do Canal Iônico , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
20.
PLoS One ; 15(1): e0228006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999745

RESUMO

A concerted action on the part of international agencies and national governments has resulted in the near-eradication of poliomyelitis. However, both the oral polio vaccine (OPV) and the inactivated polio vaccine (IPV) have deficiencies which make them suboptimal for use after global eradication. OPV is composed of attenuated Sabin strains and stimulates robust immunity, but may revert to neurovirulent forms in the intestine which can be shed and infect susceptible contacts. The majority of IPV products are manufactured using pathogenic strains inactivated with formalin. Upon eradication, the production of large quantities of pathogenic virus will present an increased biosecurity hazard. A logical ideal endgame vaccine would be an inactivated form of an attenuated strain that could afford protective immunity while safely producing larger numbers of doses per unit of virus stock than current vaccines. We report here the development of an ionizing radiation (IR)-inactivated Sabin-based vaccine using a reconstituted Mn-decapeptide (MDP) antioxidant complex derived from the radioresistant bacterium Deinococcus radiodurans. In bacteria, Mn2+-peptide antioxidants protect proteins from oxidative damage caused by extreme radiation exposure. Here we show for the first time, that MDP can protect immunogenic neutralizing epitopes in picornaviruses. MDP protects epitopes in Polio Virus 1 and 2 Sabin strains (PV1-S and PV2-S, respectively), but viral genomic RNA is not protected during supralethal irradiation. IR-inactivated Sabin viruses stimulated equivalent or improved neutralizing antibody responses in Wistar rats compared to the commercially used IPV products. Our approach reduces the biosecurity risk of the current PV vaccine production method by utilizing the Sabin strains instead of the wild type neurovirulent strains. Additionally, the IR-inactivation approach could provide a simpler, faster and less costly process for producing a more immunogenic IPV. Gamma-irradiation is a well-known method of virus inactivation and this vaccine approach could be adapted to any pathogen of interest.


Assuntos
Raios gama , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio Oral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Ensaio de Imunoadsorção Enzimática , Genoma Viral , Células HeLa , Humanos , Estresse Oxidativo , Peptídeos/sangue , Poliovirus/genética , Poliovirus/imunologia , Poliovirus/patogenicidade , Poliovirus/ultraestrutura , Ratos Wistar , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...